Rapid Prototyping and Low Volume Production for Start-Ups on a Budget

The Dobot Mooz. (Image courtesy of Dobot.)

The Dobot Mooz. (Image courtesy of Dobot.)

The hardest part of writing a review for a 3D printer is forcing yourself to stop fiddling with it for long enough to sit down and actually write the review. Even now, I catch myself pausing to check on the latest print as the Dobot Mooz hums along beside me. I already had some experience with 3D printing at home—after finding out about the Monoprice Select Mini, I couldn’t help myself—but the Mooz is more than just a 3D printer.

The Mooz becomes capable of CNC carving or laser engraving simply by swapping out the functional modules that attach to the X-axis linear actuator. It’s an impressive amount of versatility to pack into a sub-$1,000 USD machine, but how well does the Mooz perform these three different functions?

Let’s find out.

Dobot Mooz Specs

Here are the specifications for each of the Mooz’s three modules:

3D Printing

Nozzle Diameter

0.4 mm

Layer Resolution

0.05 – 0.3 mm

Extruder Temperature

190 – 260 C

Heated Bed Temperature

50 – 100 C

Build Volume

130 x 130 x 130 mm

Materials

PLA, ABS, PC, FLEX

Print Speed

10 – 80 mm/s

In terms of its 3D printing capabilities, the Mooz’s specs are fairly standard.

A layer resolution of 0.05 mm is impressive at this price point—twice as good as the Monoprice Select Mini (0.1 mm). You’ll get better resolutions from an Ultimaker 3 (0.015 mm) or MakerBot Replicator 2X (0.01 mm), but they’re also more than triple the price of the Mooz.

(Dobot Mooz 3D Printing.)

The Mooz has a smaller build volume smaller than the Ultimaker 3 or Replicator 2X, but the flexibility you get from designing for 3D printing can offset that significantly by allowing users to design large models and then slice them into printable sections for assembly.

The range of printable materials available for the Mooz also covers the standard types, though we only had time to test the machine with PLA. The range given for print speed is pretty wide, but discussion of our test prints should help clarify that aspect of the Mooz in the next section.

CNC Carving

Max Spindle Speed

12,000 rpm

Chuck Clamping Range

0 – 4 mm

Standard Bit Size

3.175mm * 0.3mm * 30° flat bottom sharp cutter

Work Area

130mm x 130mm (z-axis depends on cutting tool)

Materials

Non-Metallic Materials, e.g., wood, plastics, PCB

It’s difficult to find a comparable desktop CNC router to the Mooz, which suggests that Dobot may have found an overlooked niche in prototyping and low volume manufacturing. As a rough comparison, the Sienci Mill One has a slightly larger working area (235mm x 185mm x 100mm) and a potentially higher max spindle speed of 30,000 rpm, depending on the router. The MillRight CNC M3 kit has a working area of 260mm x 260mm x 50mm and a max spindle speed 27,000 rpm using the included DeWalt DWP611 router.

Both options are about $100 cheaper than the Mooz, but they’re also dedicated routers—and there’s certainly no way to add 3D printing or laser engraving capabilities to those machines for less than the difference in price.

Laser Engraving

Power

0.5W

Max Speed

1200mm/min

Work Area

130mm x 130mm

Materials

Wood, Paper, Leather, Some Plastics

As with CNC routing, the laser engraving specifications for the Mooz don’t quite match up to those of dedicated laser engraving machines. The FABOOL Laser Mini, marketed as the “world’s lowest priced desktop laser cutter”, starts at $598 and uses a 1.6W laser. Consequently, the FABOOL machine is able to cut a wider variety of materials than the Mooz, but it’s also not capable of 3D printing or CNC routing—and since it only operates in the XY plane, adding those capabilities isn’t really an option.

All of this implies that the Dobot Mooz is what you might call a Jack of all trades, Master of one.

(Dobot Mooz Laser Engraving.)

While it’s possible to find dedicated machines for CNC routing or laser engraving with better specs at comparable price points, that doesn’t appear to be the case for 3D printing. In any case, what you won’t find at this price point is a machine that’s capable of the trifecta of 3D printing, CNC routing and laser engraving—or even one that offers two out of three.

Flexibility is the primary advantage the Dobot Mooz has over its competition. And if you’re a start-up or a small job shop that’s looking to add 3D printing capabilities, whether for prototyping or low volume production, then flexibility and low cost are likely rank high on your list of priorities. The fact that the Mooz can also be used for CNC routing and laser engraving is icing on the cake.

The Dobot Mooz Hands-On

The Mooz isn’t a plug-and-play machine, but assembly is relatively straightforward.

Mooz Unboxing.

Mooz Unboxing.

Switching between the modules using four hex nuts is easy, though you shouldn’t expect to do quick changes between functions for consecutive operations. That being said, if you wanted to set up a small manufacturing cell using a farm of Mooz machines, you could conceivably have a set for 3D printing, a set for routing and a set for laser engraving, with plenty of back-up modules to go around. Add a cobot for switching parts between operations and you’ve got a low-volume production line going.

Desktop 3D Printing

Our Dobot Mooz completes its first print: #3DBenchy.

Our Dobot Mooz completes its first print: #3DBenchy.

I started with the Mooz configured for the function most familiar to me: 3D printing. Setting the zero point using the A4 method was simple and easy, though the step distance behaved a bit oddly at times—jogging the motor by 1 mm somehow resulted in a 0.06 mm difference, which was finer than the finest setting of 0.1 mm.

Software setup is a breeze for anyone familiar with Cura or other free slicing software. The recommended settings yielded a decent first print (#3DBenchy) though you may not want to have supports enabled by default. Although you can connect the Mooz directly to a PC via USB, our workspace layout necessitated using a microSD card to transfer the Gcode files.

Once it was clear that the machine was working properly, I sent out a general email to the rest of the office asking for 3D printing suggestions. The requests came pouring in, and for the next week the Mooz was running almost continuously throughout the day. The majority of the 3D prints came out well, save for a few cases in which the errors were, admittedly, my own. You can see the results below:

Engineering.com Geodesic V1 (top), V3 (bottom left) and V4 (bottom right).

Engineering.com Geodesic V1 (top), V3 (bottom left) and V4 (bottom right).

Anyone who’s had experience with 3D printing knows how much troubleshooting is involved. There are those days when it seems like you’ve spent more time fixing problems and printing test layers than actually making anything. Fortunately, that was never an issue for the Mooz, which proved to be a robust and reliable 3D printer.

Desktop CNC Routing

I used to think 3D printing would replace all other manufacturing processes, but now that I’m older and wiser, I recognize that there are plenty of cases where you’d be crazy to use 3D printing over a more conventional process, such as CNC machining. That’s why I was excited to try out the CNC routing capabilities on the Mooz. To do that, I needed to download Dobot’s slicer software: MoozStudio.

Since you also need MoozStudio for laser engraving, it’s worth pausing to give the software some consideration. The slicer is designed to take a 2D image and generate a complete Gcode program based on the parameters you input. For the router, these include:

  • Speed
  • Min/Max Carving Depth
  • Contrast (on the image)
  • Tool Diameter
  • Step Depth
  • Safety Height

For me, the routing function was the most intimidating because it’s the process with the greatest potential for catastrophe if something goes wrong. If you screw up setting the zero point for 3D printing or laser engraving, the worst that happens is that your workpiece gets damaged or, more likely, the operation simply doesn’t work at all.

If you mess up with a CNC router, however, you could end up with a broken machine.

The engineering.com geodesic carved into pine.

The engineering.com geodesic carved into pine.

Consequently, using the router was a matter of some very cautious trial and error. It took some time to get a feel for MoozStudio, and I’m still not completely comfortable using the software—due in large part to my inability to read Gcode beyond the superficial coordinate level.

However, there are still some peculiarities to MoozStudio regardless of your skillset. For example, the program displays imported images on a 130 x 130 grid, representing the millimeter dimensions of the Mooz on a 1-1 scale. Where this gets complicated is in translating images from pixels to millimeters.

Importing a 100 x 100 pixel image results in a 19 x 19 mm translation. Importing the same image scaled up to 200 pixels results in a 37 x 37 mm translation, and importing a 2,000 x 2,000 pixel image results in a 71 x 71 mm translation. Fortunately, this sort of software quirk is much easier to fix than a hardware issue, of which the Mooz router module had none.

Desktop Laser Engraving

Working with a laser has an intimidation factor all its own, though the concern is less about damage to the machine than to one’s eyes. Of course, safety glasses are included with the Mooz. The setup for the laser is almost the same as for the router, setting the zero point at the bottom left corner of the workpiece. Doing so is a matter of making incremental stepper motor adjustments while the laser is turned on at the lowest setting.

(Tip: Make sure you use the + button to turn on the laser, rather than just hitting the ON button. Otherwise, the laser will come on at full power and could bore a hole into your workpiece.)

To determine the module’s correct height, you’ll need to watch how the laser spot changes as you move the Z-axis and aim for the focal point. It took a little trial-and-error—which included the inspiration for the tip above—but I was able to get it sorted in short order.

As with the router, the laser engraver gets its Gcode from Dobot’s MoozStudio. Like routing, there are a few settings you can tweak—including Speed, Laser Power, Contrast and Beam Diameter—but speed seemed to make the biggest difference in terms of engraving quality. You can see a sample part that demonstrates this below:

Test workpiece for the Dobot Mooz laser engraver. The pattern on the bottom right was made with default settings and is practically invisible. The top left was engraved at the same speed but with a higher minimum laser power. The top right and bottom left were engraved at 1/8 max speed.

Test workpiece for the Dobot Mooz laser engraver. The pattern on the bottom right was made with default settings and is practically invisible. The top left was engraved at the same speed but with a higher minimum laser power. The top right and bottom left were engraved at 1/8 max speed.

3D Printing for Start-Ups & SMEs

After spending a couple of weeks with the Mooz, I can think of no better endorsement than the fact that I’m already trying to figure out how to convince my wife that we need a second 3D printer. My plan is to emphasize the Mooz’s capabilities for CNC carving and laser engraving.

But the real question is whether this machine makes sense for start-ups and SMEs.

The two biggest things the Mooz has going for it are its low price and its flexibility, both of which are high priorities for small businesses. Where the Mooz is most lacking is in supporting software—though it’s worth noting that Dobot has already released several updates for both the Mooz’s firmware and MoozStudio, and will no doubt continue to do so for the foreseeable future.

(Top) From left to right: articulated slug, filament guide, microphone shock mount. (Bottom) From left to right: I Roll 20’s D20, V29 whistle, SD card holder.

(Top) From left to right: articulated slug, filament guide, microphone shock mount. (Bottom) From left to right: I Roll 20’s D20, V29 whistle, SD card holder.

Moreover, even with my lack of Gcode skills, it’s obvious that a skilled Gcode programmer could do even more with the Mooz. MoozStudio outputs the simplest path, but certainly not the most efficient one—and if you’re a start-up or SME that’s considering 3D printing, odds are you already have at least one person who knows their Gcode on staff.

Overall, if you’re looking for an entry point into additive manufacturing and you also happen to have some light carving and laser engraving work to be done, the Dobot Mooz is a great option.

To learn more, visit Dobot.

Dobot has sponsored this article.  All opinions are mine.  –Ian Wright

RAPID + TCT 2018: 3D Printing Materials News from Roboze and EnvisionTEC

Pin It
Email

Roboze One + 400

The RAPID + TCT event is getting started today in Fort Worth, Texas, and 3DPrint.com is continuing to bring you the latest news from the showroom floor. We’ve been sharing announcements with you left and right ahead of the show, and now we’re bringing you two more.

Global chemical company SABIC, headquartered in Saudi Arabia, introduced several new materials at formnext in November, including its LEXAN EXL AMHI240F polycarbonate copolymer filament for FFF 3D printing. Now, Italian 3D printing company Roboze has announced that it will be adding this unique filament to its offering, particularly for the industrial Roboze One + 400 3D printer.

Roboze, a leader in functional prototypes produced in industrial materials like PEEK, CarbonPA, and ULTEM AM9085F, manufactures 3D printers that can handle high-performance, high temperature polymers, like SABIC’s LEXAN EXL AMHI240F.

“We are pleased to have Roboze offer LEXAN EXL AMHI240F filament on their printer platform,” said Keith Cox, Senior Business Leader, Additive Manufacturing, SABIC. “Our vision of helping the additive manufacturing industry to expand the use of engineering materials in end use applications aligns well with the capability of Roboze to deliver high quality printers for use in industrial environments.”

EXL filament ductility test

SABIC’s polycarbonate copolymer, available in black, was developed specifically for demanding applications in industries such as aerospace, automotive, and consumer, with characteristics like high impact resistance and ductility at extremely low temperatures.

The material has a heat deflection temperature of 140°C, which is higher than that of typical ABS filaments. It can deliver up to four times better notched Izod impact at room temperature than standard polycarbonates and, depending on print orientation, up to three times higher at -30°C.

LEXAN EXL AMHI240F filament, which will be added to Roboze’s offering later this year, is perfect for applications that need better flame performance than standard polycarbonate materials can offer, thanks to its compliance with UL94 V-0 flammability standard at 3.0 mm in flat (XY) and on-edge (XZ) orientations.

“The new SABIC polycarbonate filament is extraordinary! The results of the first tests have given us enormous satisfaction, and will allow us to further expand the range of high performance materials of our machines,” said Alessio Lorusso, Founder and CEO of Roboze. “We are looking forward to working together with such an innovative company as SABIC. This relationship will not only inspire our technicians, but the entire Roboze organization as well. When experience and know-how come together everybody wins.”

By working with SABIC, Roboze is showing how committed it is to choosing the most advanced materials available in terms of chemical, mechanical, and thermal properties. LEXAN EXL AMHI240F filament will increase, according to Roboze, “the versatility of its materials dedicated to metal replacement like PEEK and Carbon PEEK.”

If you’re at RAPID this week, stop by the Roboze booth #2539 to see excellent samples of finished parts that were 3D printed using the new LEXAN EXL AMHI240F filament.

3D printer manufacturer EnvisionTEC, which is sponsoring the Medical Manufacturing Innovations conference at RAPID, is also introducing new materials this week, and will be showcasing its new medical-grade (MG) biomaterials, which can be used for applications in bone regeneration, biosensor housing, drug release, and wound repair.

The new liquid silicone rubber and biodegradable PCL polyester materials, now available for purchase, make 3D printed implants safe for human use, as they’ve been manufactured with the highest possible purity for use with the company’s 3D-Bioplotter models – the Starter, Developer, and Manufacturer.

EnvisionTEC CEO Al Siblani said, “These new materials show that EnvisionTEC continues to work closely with our customers and partners to develop materials that can be easily used on our highly accurate and reliable 3D-Bioplotter.”

The 3D-Bioplotter is EnvisionTEC’s only open-source materials 3D printer, which gives medical researchers and manufacturers the flexibility to develop their own materials for research or specific patients.

Users have been 3D printing materials like hydrogels, silicones, and thermoplastics on the 3D-Bioplotter for over 15 years to advance research, but the demand for standard 3D printing materials to use with the popular bioprinter has been increasing. With the addition of MG materials to its existing portfolio of Technical Grade (TG) and Research Grade (RG), EnvisionTEC now offers three grades of materials with different levels of cost and purity.

Upon request, FDF Master Files are available for the company’s two new in-vivo MG materials: UV Silicone 60A MG and HT PCL MG.

The biocompatible liquid silicone rubber material is bio-inert, transparent, and non-biodegradable, cured with a UV light for a Shore A hardness of 60. It’s sold by the kilogram, and has been approved for short-term use in the body – 29 days or less only. UV Silicone 60A MG can also be mixed with pigments, and applications for the material include biosensor housings, microfluidics, prototyping, and wound dressing.

Biodegradable thermoplastic polyester HT PCL MG is processed at high temperatures, and is suitable for both short- and long-term use in the body. The material, available in both 1 kg and 100 g packages, will be offered in two molecular weights – 80 kDa and 120 kDa – that affect degradation time, flexibility, and stiffness. Applications for this material include hybrid scaffolds, drug release, and cartilage and bone regeneration. Customers can also quickly and easily switch between 365 nm and 405 nm light sources when using these materials.

EnvisionTEC’s new UV Silicone 60A MG, shown here, is a ready-to-print liquid silicone appropriate for microfluidics, wound dressings and more. The company also launched a biodegradable PCL polyester for use with its 3D-Bioplotter printers.

EnvisionTEC will be displaying demonstration parts that were 3D printed with its two new MG materials at booth #1304 this week. Additionally, the 3D-Bioplotter also has a new feature option, and offers its photo curing head with another wavelength.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Monoprice Rapid UV 3D Printer Resin 250ml – Clear | Coatible With All UV Resin Printers DLP, Laser, or LCD

Low cost – low fumes – safe for home use delivering ultra high accuracy and low shrinkage. MP rapid UV resin provides value and consistency in your work. High quality pigments provide stunning colors in our range of resins and available colors (black, white, Gray, Clear, yellow, red, green, and orange). compatible with all UV resin printers (dlp, laser, or LCD), the formula has been optimized for low power LCD resin printers. Cures at 405nm wavelength.

Product Features

  • Compatible with all UV resin printers (DLP, Laser, or LCD), the formula has been optimized for low power LCD resin printers.
  • Low Cost/Low Fumes: Safe for home use delivering ultra high accuracy and low shrinkage.
  • MP RapidUV resin provides value and consistency in your work.
  • Quality at a Fair Price: Monoprice’s rugged design and rigid quality control standards deliver high quality products at fair prices.
  • Service & Support : You’re never on your own with Monoprice products! We have a full team of friendly and knowledgeable technicians available to answer your questions, both before and after the sale.

Check Out Our Website For Details…

Klarm Prototyping Ltd Promotes Rapid Prototyping Services via 3D Printing

This press release was orginally distributed by SBWire

Guangzhou, China — (SBWIRE) — 10/31/2016 — Klarm Prototyping Limited offers a wide range of rapid prototyping services to small and medium-sized businesses, including product engineering, research and development , custom plastic injection molding and custom pressure die casting, general assembly and small appliance manufacturing.

3D printing applications are continuing to develop as the technology expands. Designers and engineers find it very useful in the creating of design prototypes. Not only does 3D printing technology offer many useful design features, but prototypes can consist of many different kinds of model materials.

Currently, fabrication materials used to produce prototypes range from resins, polymers and plasters, many new ones may be on the horizon as well. Depending on the scope of the prototype to be produced will determine which 3D printing fabrication materials designers prefer. Key factors that can influence the choice of materials used in 3D printing prototypes are model durability, expected lifespan, and the complexity of design.

Many companies rely on the use of prototypes and models produced by 3D printing for the purpose of conducting product, and focus group testing. The test groups are looking for design preferences from consumers or end-users. The feedback received is incorporated into the design during this stage of the process.

The data gained is used to make changes to the product as it is prepared for manufacture. 3D printing is a crucial tool for quickly making cost efficient design changes, and the ability to rapidly produce a new prototype. 3D printing applications for marketing and design function is able to cut the time necessary for producing a workable prototype. Time and cost savings using 3D printers can be as much as two-thirds.

Prototypes produced, tested and redesigned utilizing 3D printing is highly efficient because designs can be easily changed until the engineering is ideal. Instead of gaining performance data as a result of field failure, data can be easily gained in the design process. Inexpensive materials such as resins and polymers used in 3D printing offer the most durable prototype models, and also reduce cost. Research and development in 3D printing technology continually advances with new materials being developed all the time. This technology plays an important role in the efficient production of prototypes for research and product development.

3D printing creates three-dimensional objects in few minutes. It takes digital input from 3dimensional model or data and creates three-dimensional object through an additive. It is easy to use and affordable. Used by designers or for concept development or even product design to speed up the design process. Using 3D printing process, you can be able to create actual end parts and objects of your own choice. Some objects that you can create using 3D printing process include crafts, jewelry, fittings and many more.

3D printing stands on the forefront of many new product markets, fabrication materials, and hardware applications, both for the business and consumer markets. Advancing technologies are steadily developing and many advantages in advanced hardware, software and fabrication materials used in available rapid prototype systems have resulted.

3D printing advancements allow for the faster and more cost efficient prototype, and fabrication model. 3D printing advantages also include the elimination of expensive tooling, manpower, and the costs associated with the creation of design prototypes. All of these 3D printing advantages help firms to create the models necessary in order to bring their products to market.

About Klarm Prototyping Ltd
Klarm Prototyping Ltd strives to turn out to be the most professional rapid prototype from China supplier. The firm continuously tries to reach top excellence level in quality. They want to deliver customers with precision prototypes sold at competitive prices and delivered on time.

Media Contact:
Company: Guangzhou Klarm Prototyping Ltd
Contact: Lanny Larm
Phone: +86-20-3486-3083
Address: Guangzhou, China
Email: klarm.prototyping@gmail.com
Website: http://www.rapidprototypechina.com

For more information on this press release visit: http://www.sbwire.com/press-releases/klarm-prototyping-ltd-promotes-rapid-prototyping-services-via-3d-printing-737538.htm